Quantitative DIC microscopy using an off-axis self-interference approach.
نویسندگان
چکیده
Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.
منابع مشابه
Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging.
Differential interference contrast (DIC) microscopy is an inherently qualitative phase-imaging technique. What is obtained is an image with mixed phase-gradient and amplitude information rather than a true linear mapping of actual optical path length (OPL) differences. Here we investigate an approach that combines the transport-of-intensity equation (TIE) with DIC microscopy, thus improving dir...
متن کاملAlternating minimization algorithm for quantitative differential-interference contrast (DIC) microscopy
A new iterative algorithm for quantitative image reconstruction for differential-interference contrast (DIC) microscopy is presented, along with simulations demonstrating key properties of the algorithm. The algorithm is an alternating minimization (AM) algorithm based on a diffraction imaging model for DIC images. The algorithm computes a specimen’s complex transmittance function (magnitude an...
متن کاملReconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope.
An image processing algorithm is presented to reconstruct optical pathlength distributions from images of nonabsorbing weak phase objects, obtained by a differential interference contrast (DIC) microscope, equipped with a charge-coupled device camera. The method is demonstrated on DIC images of transparent latex spheres and unstained bovine spermatozoa. The images were obtained with a wide-fiel...
متن کاملTheoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy.
Imaging models for differential-interference-contrast (DIC) microscopy are presented. Two- and three-dimensional models for DIC imaging under partially coherent illumination were derived and tested by using phantom specimens viewed with several conventional DIC microscopes and quasi-monochromatic light. DIC images recorded with a CCD camera were compared with model predictions that were generat...
متن کاملNew Directions in Interferometric Phase Microscopy of Biological Cell Dynamics
Interferometric phase microscopy has the potential of becoming a widely-used tool for quantitative measurements of biological cells. We introduce the current state of the art, the open questions, and solutions experimentally developed in our laboratory. ©2009 Optical Society of America OCIS codes: (090.1995) Digital holography, (090.2880) Holographic interferometry, (170.3880) Medical and biolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 35 14 شماره
صفحات -
تاریخ انتشار 2010